前言:宁可一思进,莫要一思停
才发现redis差了一个集群没写。
文章大部分参考尚硅谷redis课程的笔记。
引入
- 容量不够,redis如何进行扩容?
- 并发写操作, redis如何分摊?
- 另外,主从模式,薪火相传模式,主机宕机,导致ip地址发生变化,应用程序中配置需要修改对应的主机地址、端口等信息。
- 之前通过代理主机来解决,但是redis3.0中提供了解决方案。就是无中心化集群配置。
是什么
- Redis 集群实现了对Redis的水平扩容,即启动N个redis节点,将整个数据库分布存储在这N个节点中,每个节点存储总数据的1/N。
- Redis 集群通过分区(partition)来提供一定程度的可用性(availability): 即使集群中有一部分节点失效或者无法进行通讯, 集群也可以继续处理命令请求。
相关操作
这里用的是redis6的安装包,redis5及以下的部署集群需要另外的环境
编译安装redis6
先安装C 语言的编译环境
yum install centos-release-scl scl-utils-build
yum install -y devtoolset-8-toolchain
scl enable devtoolset-8 bash
查看gcc版本
gcc --version
到相应目录下执行make命令
更改配置文件
这里设置三主三从(6379(MASTER)、6380(MASTER)、6381(MASTER)、6389、6390、6391)
更改redis6379文件
其余的就更改端口号
:%s/6379/端口号
启动服务
redis-server 配置文件
查看服务是否启动成功并检查是否生成了相关node文件
ps -ef|grep redis
合并节点为一个集群
cd /opt/redis-6.2.1/src
redis-cli --cluster create --cluster-replicas 1 127.0.0.1:6379 127.0.0.1:6380 127.0.0.1:6381 127.0.0.1:6389 127.0.0.1:6390 127.0.0.1:6391
选项 --cluster-replicas 1 表示我们希望为集群中的每个主节点创建一个从节点。
至此集群搭建成功
相关问题
注意集群搭建后要以集群的方式登入,而不是普通登入
redis-cli -c -p 6379
-c使用集群方式连接
如果采用普通方式连接会出现MOVED重定向操作
查看集群信息
cluster node
- 一个集群至少要有三个主节点
- 分配原则尽量保证每个主数据库运行在不同的IP地址,每个从库和主库不在一个IP地址上。
什么是slots
可以看见每次存储数据的时候会有Redirected to slot提示
- 一个 Redis 集群包含 16384 个插槽(hash slot), 数据库中的每个键都属于这 16384 个插槽的其中一个,
- 集群使用公式 CRC16(key) % 16384 来计算键 key 属于哪个槽, 其中 CRC16(key) 语句用于计算键 key 的 CRC16 校验和 。
- 集群中的每个节点负责处理一部分插槽。 举个例子, 如果一个集群可以有主节点, 其中:
节点 A 负责处理 0 号至 5460 号插槽。
节点 B 负责处理 5461 号至 10922 号插槽。
节点 C 负责处理 10923 号至 16383 号插槽。
不在一个slot下的键值,是不能使用mget,mset等多键操作。
故障相关
- 如果主节点下线后从节点自动升为主节点
-主节点恢复后,主节点回来变成从机。 - 如果某一段插槽的主从都挂掉,而cluster-require-full-coverage 为yes ,那么 ,整个集群都挂掉
- 如果某一段插槽的主从都挂掉,而cluster-require-full-coverage 为no ,那么,该插槽数据全都不能使用,也无法存储。
redis缓存穿透、缓存击穿、缓存雪崩
缓存穿透
- key对应的value不存在,每次针对此key的请求从缓存获取不到,请求都会压到数据源,从而可能压垮数据源。
- 一个一定不存在缓存及查询不到的数据,由于缓存是不命中时被动写的,并且出于容错考虑,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义。
如何解决 - 对空值缓存:如果一个查询返回的数据为空(不管是数据是否不存在),我们仍然把这个空结果(null)进行缓存,设置空结果的过期时间会很短,最长不超过五分钟
- 设置可访问的名单(白名单):使用bitmaps类型定义一个可以访问的名单,名单id作为bitmaps的偏移量,每次访问和bitmap里面的id进行比较,如果访问id不在bitmaps里面,进行拦截,不允许访问。
- 采用布隆过滤器:(布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数)。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。)将将所有可能存在数据哈希到一个足够大的bitmaps中,一个一定不存在的数据会被 这个bitmaps拦截掉,从而避免了对底层存储系统的查询压力。
- 进行实时监控:当发现Redis的命中率开始急速降低,需要排查访问对象和访问的数据,和运维人员配合,可以设置黑名单限制服务
缓存击穿
- key对应的value存在但在redis中过期,此时若有大量并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
- key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题。
如何解决
数据:在redis高峰访问之前,把一些热门数据提前存入到redis里面,加大这些热门数据key的时长
- 实时调整:现场监控哪些数据热门,实时调整key的过期时长
缓存雪崩
- key对应的数据存在,但在redis中过期,此时若有大量并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。
- 缓存雪崩与缓存击穿的区别在于这里针对很多key缓存,前者则是某一个key
如何解决
- 构建多级缓存架构:nginx缓存 + redis缓存 +其他缓存(ehcache等)
- 使用锁或队列:用加锁或者队列的方式保证来保证不会有大量的线程对数据库一次性进行读写,从而避免失效时大量的并发请求落到底层存储系统上。不适用高并发情况
- 设置过期标志更新缓存:记录缓存数据是否过期(设置提前量),如果过期会触发通知另外的线程在后台去更新实际key的缓存。
- 将缓存失效时间分散开:比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。